

New Radiation Issues for Spacecraft Microelectronics -Commercial Off-The Shelf (COTS)

Chuck Barnes
Radiation Testing and Failure Analysis Group
Electronic Parts Engineering Office (507)
charles.e.barnes@jpl.nasa.gov
(818) 354-4467

January 29, 1998

Radiation Issues CEB-1, 1/29/98

Commercial-off-the-shelf (COTS) parts in space

Radiation Issues CEB-2, 1/29/98

Impetus for COTS Use in Space

 Access to high performance, state-of-the-art microelectronics difficult to achieve with small, custom parts purchases

- Large, standardized software base
- Lower cost
 - Although upscreening can raise cost substantially
 - Parts are small fraction of total satellite/spacecraft cost (5 to 10%), but this
 cost will be relatively higher in future
- Decreased availability of parts off rad-hard processing lines
- Greater government reliance on industry standards and specifications for part procurement (Perry Directive)
- For NASA, new paradigm of "Better, Faster, Cheaper" allows for risk management rather than complete elimination of risk, and requires quick, inexpensive procurements

Radiation Issues

World Semiconductor Device/Circuit Business

Problems with Use of COTS in Space

JPL Electronic Parts Engineering

- Small customers (space) cannot drive development, specifications or requirements
- Life cycle costs can actually be higher for COTS-intensive satellite due to added testing, part and system failure, system re-work, added cost of shielding
- Reliability data on COTS is often unknown or unavailable to small customer
- Commercial competitiveness to reduce cost, improve performance can jeopardize availability of specific parts required in future systems
- Space applications do not usually allow for repair or replacement
- Plastic encapsulated microcircuits (PEMs) are very popular and more reliable than previously, but can still pose problems for space use
 - Handling and assembly problems
 - Encapsulants vary in composition and properties
 - Moisture absorption "popcorning"
 - Limited temperature ranges
 - Differences in thermal expansion coefficients are a problem with thermal cycling
- Radiation is a big problem

Radiation Complicates COTS Usage

- Reliability and RHA often unknown
- Radiation is unique
 - Can't leverage off other high rel users like automotive
- TID response depends on process
 - "Positive" changes can reduce radiation tolerance
 - NASA technical penetration often difficult
- SEE depends on circuit design and dimensions
 - Commercial vendor can change these without notice
- No good way of predicting radiation response without testing
 - IRONY Process knowledge, testability and penetration are where you don't need them – rad hard process lines
- Packaging can make RHA hard to establish
 - Flip chip bonding
 - SEE hard to do on plastics
 - Multichip modules (MCMs) hard to test

Radiation Issues

Approaches to Using COTS in space

- Work with commercial suppliers to obtain reliability and radiation data
- Encourage data and information sharing among commercial parts vendors, users and the government
- Evaluate commercial process lines, when possible, to determine SPC, workmanship quality, reliability and radiation hardness
 - Similar to QML audits performed by DESC
 - Must include assessment of quality of data
- Re-examine screening and failure analysis requirements and techniques to determine if they are really needed and their relevance to COTS usage
- Develop process line "tweaks" that will enhance reliability and/or radiation tolerance but are minor enough to be implemented by commercial parts vendors
- Evaluate design techniques for introducing radiation hardness and reliability through design changes
 - Single event effects are amenable to this, but not total dose effects
 - Particularly important for SEL that's all many users care about
- Maintain a vigorous, healthy test activity to provide continuous evaluation of radiation tolerance and reliability
 - As noted earlier, rad tolerance can change without notice
- Through working groups and consortia, evaluate standards and specifications and establish new standards for procurement

Radiation Issues

JPL RHA Activities in Support of Advanced COTS Usage

JPL Electronic Parts Engineering

Radiation analysis and testing of COTS parts

- Support to NASA flight projects
- Cheaper, easier test methodologies

Radiation risk mitigation techniques

- Latchup mitigation
 - Circuit solutions
 - Neutron irradiation
- RadPak, shielding
- Mitigation of hard errors, dielectric rupture
- Software mitigation techniques

Evaluation, research

- Advanced COTS technologies
 - FPGAs, DRAMs, highly scaled devices, MCMs, MEMS, photonics, III-V-based technologies
- New radiation phenomena
 - Enhanced low dose rate effects
 - FPGA anti-fuse rupture and connection

Dissemination of radiation data

- RADATA data bank
- URL: http://radnet.jpl.nasa.gov

COTS Summary

JPL Electronic Parts Engineering

- It is inevitable that space flight systems will use COTS to a greater degree in the future; already taking place to a limited extent
- There are still many space applications where it would be very difficult to use large percentages of COTS parts
- Life cycle costs can actually be less for radiation hardened parts than for COTS
- Watch out for hybrids can contain vulnerable parts
- No single, elegant solution exists for RHA problems associated with use of advanced commercial parts in space
 - Mission performance and radiation environment requirements can vary drastically
 - ◆ A variety of solutions can be used for any given mission
 - Establish RHA with rad testing
 - Disseminate rad data to designers so they can use it early in project cycle
 - Use various shielding techniques
 - Use software and hardware mitigation methods
 - Use modified commercial designs that are more rad tolerant
 - Go to captive lines for rad hard product
 - ◆ Implementation of solutions is more difficult than identifying solutions
 - Projects have no funds for RHA early in cycle